Hydrolysis of N - \boldsymbol{p}-Nitrobenzylideneaniline: a Quantitative Study of Specific and General Catalysis

By Demetrio Pitea,* Giorgio Favini, and Domenico Grasso, Institute of Physical Chemistry, University of Milan, Milan, Italy

Abstract

The $p a_{\mathrm{H}}{ }^{*}$-rate profile for the hydrolysis of $N-p-$ nitrobenzylideneaniline was investigated in the $\mathrm{pa}{ }_{\mathrm{H}}{ }^{*}$ range $2 \cdot 72$ $10 \cdot 94$, in buffered aqueous methanol solutions ($20.0 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}$) at 25° and ionic strength 0.045 m . The dependence of rate coefficients on buffer concentration at constant $\mathrm{pa} \boldsymbol{a}_{\mathbf{H}}{ }^{*}$, constant ratio of buffer components at each show the influence of catalysis, obeying the expression $k_{\text {obs }}=k_{\text {ext }}+k_{\text {cat }}[\mathrm{HA}]$, in which the straight line parameters show a complex dependence on $a_{\mathbf{H}}{ }^{*}$. Starting from the generally accepted mechanism for these reactions, a steady-state rate equation for specific and general catalysis was developed. An analysis of this rate equation has given not only the entire set of parameters but also the rate-determining steps and the values of some individual rate coefficients. The risk of making erroneous conclusions in the absence of a quantitative study of general catalysis is underlined.

Kinetic studies of the pH , structure, and medium effects on the rate of hydrolysis of Schiff's bases has permitted the establishment of the general features of these rather complex reactions. ${ }^{1-3}$ The general mechanism can be described by reactions (1)-(7). \dagger

$$
\begin{align*}
& \underset{\mathrm{C}}{\mathrm{C}} \stackrel{+}{\mathrm{N}} \mathrm{HPh} \stackrel{\kappa_{1}}{\rightleftharpoons} \stackrel{\mid}{\mathrm{C}}=\mathrm{NPh}+\mathrm{H}^{+} \tag{1}\\
& \mathrm{C}^{\mathrm{C}}=+\mathrm{NHPh}^{+}+\mathrm{OH}^{-} \xrightarrow[k_{-2}]{k_{2}^{\prime}} \mathrm{PhNHCOH} \tag{2}\\
& \mid \stackrel{+}{\mathrm{C}}=\mathrm{HPh}+\mathrm{H}_{2} \mathrm{O} \underset{k_{-3}}{k_{s}^{\prime}} \mathrm{PhNHCOH}+\mathrm{H}^{+} \tag{3}\\
& \mathrm{Ph}_{\mathrm{N}}^{\stackrel{+}{\mathrm{H}}} \mathrm{H}_{2} \mathrm{COH} \stackrel{K_{4}}{\rightleftharpoons} \mathrm{PhNH} \stackrel{\mid}{\mid} \mathrm{OH}+\mathrm{H}^{+} \tag{4}\\
& \mathrm{PhNHCOH} \underset{k_{-5}}{k_{5}}>\mathrm{C}=\mathrm{O}+\mathrm{PhNH}_{2} \tag{5}\\
& \mathrm{Ph}_{\mathrm{N}}^{+} \mathrm{H}_{2} \mathrm{COH} \underset{k_{-6}}{k_{0}} \mathrm{C}=\mathrm{O}+\mathrm{Ph}_{\mathrm{N}} \stackrel{+}{\mathrm{H}_{3}} \tag{6}\\
& \mathrm{PhN}_{3} \stackrel{+}{\mathrm{K}_{3}} \stackrel{K_{7}}{\rightleftharpoons} \mathrm{PhNH}_{2}+\mathrm{H}^{+} \tag{7}
\end{align*}
$$

On the assumption that the formation of the carbinolamine intermediates and their decomposition are both slow steps, a steady-state rate equation was written for hydroysis in aqueous solutions; ${ }^{4}$ subsequently, it was shown that the same equation holds in aqueous methanol as the influence of methanolysis can be neglected. ${ }^{5}$ It was further established that for alkaline, pH -independent hydrolysis, the rate-determining step involves the

[^0]attack of hydroxide ion on the conjugate acid of the substrate rather than that of water on the free base. ${ }^{6}$

In addition, previous studies have revealed that the addition of nucleophilic reagents to Schiff's bases is subject to general acid-base catalysis ${ }^{7}$ but it has never been shown how the general catalysis accounts quantitatively for the observed rates.

In an attempt to obtain information pertinent to these questions, the kinetics of the hydrolysis of N - p-nitrobenzylideneaniline were studied at 25° in buffered aqueous methanol solutions ($20.0 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}$). The dependence of the rate coefficient on buffer concentration at constant $\mathrm{p} a_{\mathrm{H}}{ }^{*}\left(a_{\mathrm{H}}{ }^{*}=\right.$ activity of solvated hydrogen ions, with reference to the standard state in the mixed solvent), ${ }^{8}$ constant ratio of buffer components, and constant ionic strength was checked as well as the dependence on $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ at constant ionic strength.

EXPERIMENTAL

Materials.-Spectrograde methanol was rigorously dried by distillation over Na and then over Mg under dry nitrogen and redistilled. N - p-Nitrobenzylideneaniline was prepared by condensing equimolar amounts of aniline and p-nitrobenzaldehyde, as previously reported, ${ }^{9} \lambda_{\max }$ (MeOH) $290(\varepsilon 14,000)$ and $335 \mathrm{~nm}(11,040)$.

Buffers. -In the $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ range $2 \cdot 5-7 \cdot 7$, buffer solutions were prepared by mixing the appropriate volumes V of solution A [$x \mathrm{M}-\mathrm{HCl}-y \mathrm{~m}-\mathrm{KCl}(2: 1)]$ and B [$x \mathrm{M}-\mathrm{AcOK}-$ $y \mathrm{~m}-\mathrm{KCl}(1: 1)]$. In the $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ range $7 \cdot 4$ - 11 buffers were prepared from 0.01 m -sodium tetraborate, $0.02 \mathrm{M}-\mathrm{NaCl}$, and aqueous $0 \cdot 10 \mathrm{~m}-\mathrm{NaOH}$. In each starting solution the methanol concentration was so calculated that the final solution contained $20.0 \% \mathrm{w} / \mathrm{w}$ water. In this solvent, it was considered that $\mathrm{p} a_{\mathrm{H}}{ }^{*}=$ meter reading +0.06 at $25^{\circ}{ }^{10}$ The ionic strength of the final solutions was held constant at 0.045 m .

Two series of acetate buffer solution were prepared. The
${ }^{6}$ J. Archila, H. Bull, C. Lagenaur, and E. H. Cordes, J. Org. Chem., 1971, 36, 1345.
${ }^{7}$ (a) K. Koehler, W. Sandstrom, and E. H. Cordes, J. Amer. Chem. Soc., 1964, 86, 2413; (b) G. M. Santerre, C. J. Hansrote, jun., and T. I. Crowell, ibid., 1958, 80, 1254.
${ }^{\prime}$ ' R. G. Bates, 'Determination of pH ,' Wiley, New York, 1964, p. 223.
${ }^{9}$ D. Pitea, D. Grasso, and G. Favini, Gazzetta, 1970, 100, 519.
${ }_{10}$ C. L. De Ligny, P. F. M. Luykx, M. Renbach, and A. A. Wienecke, Rec. Trav. chim., 1960, 79, 699, 727.
first by mixing solutions A and $\mathrm{B}(x 0.02-0.1, y 0.001-$ 0.03 ）in a constant volume ratio；these buffers with con－ stant ionic strength，with different concentrations but the same ratio of components at each $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ ，were used for determining dependence of the rate coefficients on the buffer concentration at constant $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ values．The buffers for measurements of the dependence of rate coefficients on $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ at constant ionic strength were prepared by mixing solutions A and $\mathrm{B}(x=y=0.025)$ in various volume ratios．

Kinetics．－A solution of the N－p－nitrobenzylideneaniline in anhydrous methanol was prepared，care being taken to shield the solution from exposure to light，and the absence of any hydrolysis products was checked spectrophoto－ metrically．${ }^{11}$ The solution（ 0.3 ml ）was injected from a calibrated syringe into the thermostatted buffer（ 3.0 ml ） contained in a 1 cm quartz cell．

Rate coefficients were evaluated at a fixed wavelength （ $285-295 \mathrm{~nm}$ ）by measuring the absorbance of the solution with a Hitachi－Perkin－Elmer model 139 spectrophotometer at $25 \pm 0.05^{\circ}$ ．For the runs with $t_{1 / 2} 0.25 \mathrm{~min}$ to a few hours，a home－made injection system was used to minimize the time lapse between mixing and the start of recording； the absorbance change was plotted continuously against time．For slow runs with $t_{1 / 2}>10 \mathrm{~h}$ ，measurements were carried out on solutions kept in tightly stoppered cells and maintained in suitably thermostatted reactors；in each run，series of pairs of absorbance values were taken such that the time interval separating them was a constant．

At the conclusion of kinetic runs，the u．v．spectra were identical with those of equimolar samples of authentic p－nitrobenzaldehyde and aniline．

For all reactions，which were followed to $80-90 \%$ con－ version pseudo－first－order kinetics were obeyed．Rate coefficients were calculated by Margerison＇s procedure ${ }^{12 a}$ or by Guggenheim＇s method．${ }^{13}$ For every run，the rate coefficient was obtained by a weighted，${ }^{12 b}$ least－squares， linear regression method；only runs for which the index of determination（ r^{2} ）was $\geqslant 0.99$ have been considered．The reported rate coefficients $k_{\text {obs }}$ are the mean values for a group of duplicate experiments at different wavelengths and were tested for homogeneity．${ }^{12 c}$

In the overlap $\mathrm{p} a_{\mathrm{H}}$＊range of the two buffers，the rate coefficients were practically independent of the choice of the buffer system．When the buffer capacity was low， $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ was checked during kinetic runs．The results were rejected when $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ variations exceeded $0 \cdot 1$ units．

The rates of hydrolysis in the region of appreciable protonation of $N-p$－nitrobenzylideneaniline were too fast to permit accurate extrapolations of optical density readings to zero time and so an accurate spectral titration curve of the protonation of the substrate could not be obtained．

RESULTS

The dissociation constant $K_{\text {HA }}$ of acetic acid in the buffered，aqueous methanol solution was evaluated from a set of experimental values of $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ at different volume ratios （Table 1）．Using the activity coefficients given by Shed－ lovsky and Kay ${ }^{14}$ and $\gamma_{\mathrm{HA}}=1$ ，the parameters of the equation $\log \left[a_{\left(\mathrm{A}^{-}\right)}{ }^{*} / a_{\mathrm{HA}}{ }^{*}\right]=-\mathrm{p} K_{\mathrm{HA}}+\mathrm{p} a_{\mathrm{H}}{ }^{*}$ were obtained by a least－squares treatment．The following values were obtained（ $r^{2}=0.999 ; \pm$ refer to 95% confidence limits）：
${ }_{11}$ D．Pitea，D．Grasso，and G．Favini，Gazzetta，1970，100， 301.
12 D．Margerison，＇The Practice of Kinetics，＇eds．C．H．Bam－ ford and C．F．H．Tipper，Elsevier，Amsterdam， 1969 （a）ch．5； （b）method 2 on p．375；（c）p． 382.
$\mathrm{p} K_{\text {HA }}=6.23 \pm 0.11$（slope 0.99 ± 0.02 ）．The calculated value of $K_{\text {HA }}\left[(5.88 \pm 1.70) \times 10^{-7}\right]$ is in fairly good agree－ ment with literature data．${ }^{\bar{i}}, 14$
The dependence of rate coefficients on buffer concen－ tration at constant $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ ，constant ratio of buffer com－ ponents at each $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ ，and constant ionic strength 0.045 m was studied in the $3.02-8.25 \mathrm{p} a_{\text {ت }}{ }^{*}$ range；the weighted mean values（ $k_{\text {obs }}$ ）of the rate coefficients together with estimated standard errors and the corresponding number of degrees of freedom are given in Table 2.

Table 1
Experimental values of $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ at different volume ratios

$V_{\mathrm{A}} / V_{\mathrm{B}}{ }^{a}$						
$V_{\mathrm{A}} / V_{\mathrm{B}}$	0.248	0.245	0.236	0.234	0.211	0.187
$\mathrm{p} a_{\mathrm{H}}{ }^{*}$	4.11	4.50	5.00	5.07	5.50	5.75

${ }^{a}$ For $V_{\mathrm{A}} / V_{\mathrm{B}}$ see Experimental section．${ }^{b}$ Mean standard deviations are 0.002 for $V_{\mathrm{A}} / V_{\mathrm{B}}$ and 0.02 for $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ ．Each standard deviation is based on 5－7 determinations．

Table 2
Effect of acetic acid concentration on the rate of hydrolysis of N－p－nitrobenzylideneaniline at constant $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ ， constant ionic strength（ 0.045 M ），and constant buffer component ratio at each $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ in aqueous methanol （ $20.0 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}$ ）at $25^{\circ}{ }^{a}$

$\mathrm{p} a_{\mathrm{H}}$＊	$10^{2}[\mathrm{HA}] / \mathrm{m}$	$10^{2} k_{\text {obs }} / \mathrm{s}^{-1}{ }^{\text {b }}$	Degree of freedom
$3 \cdot 02$	$1 \cdot 30$	27.9 ± 0.9	5
	$1 \cdot 67$	$30 \cdot 0 \pm 1.0$	5
	1.97	$31 \cdot 4 \pm 1 \cdot 0$	6
	$2 \cdot 77$	35．8 ${ }^{\text {土 }} 1 \cdot 2$	5
3.96	$1 \cdot 23$	$16 \cdot 8 \pm 0 \cdot 4$	3
	1.45	17．6	3
	$1 \cdot 81$	$18 \cdot 8$ 士 0.7	3
	$2 \cdot 54$	$22 \cdot 2 \pm 0.9$	4
$4 \cdot 17$	$1 \cdot 80$	$12 \cdot 1 \pm 0 \cdot 2$	3
	$2 \cdot 89$	$14 \cdot 3 \pm 0 \cdot 2$	4
	$3 \cdot 61$	$16 \cdot 2 \pm 0 \cdot 1$	3
	$4 \cdot 33$	$17 \cdot 5 \pm 0 \cdot 2$	3
4.56	$1 \cdot 43$	$5 \cdot 70 \pm 0.21$	3
	$1 \cdot 79$	6.08 ± 0.15	3
	$2 \cdot 15$	6.48 亡 0.08	3
	$2 \cdot 51$	6.81 ± 0.20	3
$5 \cdot 13$	$1 \cdot 38$	1.74 ± 0.04	3
	1.72	1.88 亡 0.01	4
	$2 \cdot 07$	1.98 ± 0.02	3
	$2 \cdot 41$	$2 \cdot 10 \pm 0 \cdot 06$	3
$5 \cdot 81$	$1 \cdot 15$	0.442 士 0.006	4
	1.43	0.466 ± 0.003	4
	1.72	0.490 ± 0.002	4
	$2 \cdot 00$	0.512 ± 0.003	4
6.06	$1 \cdot 23$	$0 \cdot 288 \pm 0.001$	4
	$1 \cdot 47$	0.301 ± 0.001	4
	$1 \cdot 72$	0.313 ± 0.001	4
	1.97	0.324 ± 0.001	4
	$2 \cdot 46$	0.346 ± 0.002	4

${ }^{a}$ See text for runs at $\mathrm{p} a_{\mathrm{H}}{ }^{*}>\mathbf{6} \cdot \mathbf{0 6}$ ．${ }^{b}$ Error refers to estimated standard error based on degrees of freedom．

Plots of $k_{\text {obs }}$ against［HA］are linear；the coefficients of equation（8）are reported in Table 3．Although a small

$$
\begin{equation*}
k_{\mathrm{obs}}=k_{\mathrm{ext}}+k_{\mathrm{cat}}[\mathrm{HA}] \tag{8}
\end{equation*}
$$

increase in the rate coefficients with the general acid con－ centration was also observed at $\mathrm{p} a_{\mathrm{H}}{ }^{*} 7 \cdot 15$（acetate buffer） and 8.25 （borate buffer）the statistic test at a 0.05 sig－ nificance level shows that we cannot reject the hypothesis

[^1]${ }^{14}$ T．Shedlovsky and R．L．Kay，J．Phys．Chem．，1956，60， 151.
that $k_{\text {cat }}=0$; accordingly, the influence of buffer concentration can be neglected.

The dependence of rate coefficients on $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ at constant ionic strength 0.045 M was studied in the $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ range 2.72 10.94 at intervals of $c a .0 .25$ units: representative values and average errors are reported in Table 4.

Table 3
Intercepts ($k_{\text {ext }}$) and slopes ($k_{\text {cat }}$) for the straight line plots of $k_{\text {obs }}$ against [HA] [equation (8)]

$\mathrm{p} a_{\mathrm{H}}{ }^{*}$	$r^{2 a}$	$10^{2} k_{\text {ext }} / \mathrm{s}^{-1 b}$	$k_{\text {cat }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1 b}$
$3 \cdot 02$	0.998	20.8 ± 0.9	$5 \cdot 42 \pm 0 \cdot 12$
$3 \cdot 96$	0.995	11.7 ± 1.4	$4 \cdot 11 \pm 0.50$
$4 \cdot 17$	0.997	8.11 ± 1.06	$2 \cdot 20 \pm 0.85$
$4 \cdot 56$	0.997	$4 \cdot 19 \pm 0.35$	1.06 ± 0.35
$5 \cdot 13$	0.983	1.31 ± 0.23	0.327 ± 0.168
$5 \cdot 81$	0.999	0.350 ± 0.009	0.082 ± 0.007
6.06	0.999	0.229 ± 0.005	0.049 ± 0.004

Table 4
Effect of acidity on the rate of hydrolysis of N - p-nitrobenzylideneaniline at 25° and ionic strength 0.045 m

$\mathrm{p} a_{\mathrm{H}}{ }^{*}{ }^{\text {a }}$	$-\log k_{\text {obs }}{ }^{\text {b }}$	$-\log k_{\mathrm{ext}}{ }^{\prime}$ c	$\mathrm{p} a_{\mathrm{H}}{ }^{*}{ }^{\text {d }}$	$-\log k_{\text {abs }}{ }^{\text {b }}$
$2 \cdot 72$	$0 \cdot 441$	0.590	$7 \cdot 39$	$3 \cdot 83$
$3 \cdot 64$	$0 \cdot 623$	0.788	$7 \cdot 67$	$4 \cdot 00$
$4 \cdot 52$	$1 \cdot 18$	$1 \cdot 37$	$7 \cdot 98$	$4 \cdot 36$
$5 \cdot 15$	$1 \cdot 74$	1.92	$8 \cdot 52$	$4 \cdot 79$
$5 \cdot 97$	$2 \cdot 48$	$2 \cdot 59$	$8 \cdot 91$	$5 \cdot 08$
$6 \cdot 63$	$3 \cdot 19$	$3 \cdot 25$	$9 \cdot 15$	$5 \cdot 29$
6.94	$3 \cdot 39$	$3 \cdot 42$	10.04	$5 \cdot 54$
$7 \cdot 39$	$3 \cdot 85$	$3 \cdot 85$	$10 \cdot 48$	$5 \cdot 58$
$7 \cdot 67$	$3 \cdot 99$	$3 \cdot 99$	10.94	$5 \cdot 60$

${ }^{a}$ Acetate buffer. ${ }^{b}$ Weighted mean value of the observed rate coefficients based on $4-8$ runs (s^{-1}); average errors based on 95% confidence limits are $\pm 8 \%$ at $\mathrm{p} a_{\mathrm{H}}{ }^{*}<4 \cdot 2$ and $\pm 1 \%$ at $\mathrm{p} a_{\mathrm{H}}{ }^{*}>4 \cdot 2$. ${ }^{c}$ Observed rate coefficient corrected for general catalysis. ${ }^{a}$ Borate buffer.

discussion

The observation that in acid solution (at constant $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ and constant ionic strength) the rate coefficients show significant variations with changes in the concentration of buffer solutions is characteristic of reactions showing general acid-base catalysis. General acid catalysis was previously observed under conditions in which the substrate exists as free base ${ }^{7 b, 15}$ while general base catalysis was observed under conditions in which the substrate is fully protonated. ${ }^{16}$

In our case, the lack of general catalysis at $\mathrm{p} a_{\mathrm{H}}{ }^{*}>7$ where the reactions governed by $k_{2}{ }^{\prime}$ and $k_{3}{ }^{\prime}$ are predominant, should indicate that the observed general catalysis is effective in reactions (5) and/or (6).

The usual mechanism for general catalysis is given in

equation (9); the initially formed carbinolamine intermediate must undergo at least one proton transfer before
${ }^{15}$ E. H. Cordes and W. P. Jencks, J. Amer. Chem. Soc., 1962, 84, 832.
it can break down to products. Such proton transfers have been assumed to be too fast to be rate determining.

In the alternative mechanism (10) the rate-deter-

mining step is formation of the zwitterionic intermediate. It would also be expected that bifunctional catalysts could convert the neutral carbinolamine into the zwitterion directly.

Accordingly, there are two kinetically indistinguishable mechanisms. Both might be operative, possibly with a different weight depending on the pH range.

The rate law for mechanisms (9) and (10) is expressed by equation (11) where $k_{\mathrm{O}}, k_{\mathrm{S}}$, and k_{HA} refer to the

$$
\begin{equation*}
\text { Rate }=[\mathrm{PhNHCOH}]\left\{k_{\mathrm{O}}+k_{\mathrm{S}}+k_{\mathrm{HA}}[\mathrm{HA}]\right\} \tag{ll}
\end{equation*}
$$

solvent and specific and general catalysed reactions, respectively.

The steady-state rate law for the overall reaction is (12)

$$
\begin{equation*}
k_{\mathrm{obs}}=\frac{\left(k_{2}+k_{3} a_{\mathrm{H}}^{*}\right)\left\{k_{\mathrm{O}}+k_{\mathrm{S}} a_{\mathrm{H}}{ }^{*}+k_{\mathrm{HA}}[\mathrm{HA}]\right\}}{\left(K_{1}+a_{\mathrm{H}}^{*}\right)\left\{\left(k_{\mathrm{O}}+k_{-2}\right)+\right.} \tag{12}
\end{equation*}
$$

where $k_{2}=k_{2}{ }^{\prime} a_{\mathrm{H}}{ }^{*} a_{\mathrm{OH}}{ }^{*}$ and $k_{3}=k_{3}{ }^{\prime}\left[\mathrm{H}_{2} \mathrm{O}\right]$. Two assumptions may be made: (a) $k_{-2} \ll k_{\mathrm{O}}$, as shown for several similar reactions ${ }^{16}$ and (b) $k_{\mathrm{O}}+\left(k_{\mathrm{S}}+k_{-3}\right) a_{\mathrm{H}} \gg$ $k_{\text {EA }}[\mathrm{HA}]$, by comparison of equations (8) and (12). This results in equation (13).

$$
\begin{align*}
k_{\mathrm{obs}}= & \frac{\left(k_{2}+k_{3} a_{\mathrm{H}}{ }^{*}\right)\left(k_{\mathrm{O}}+k_{\mathrm{S}} a_{\mathrm{H}}^{*}\right)+}{k_{\mathrm{HA}}\left(k_{2}+k_{3} a_{\mathrm{H}}{ }^{*}\right)[\mathrm{HA}]} \tag{13}\\
= & \left.k_{\mathrm{ext}}+k_{\mathrm{cat}}+a_{\mathrm{H}}{ }^{*}\right)\left[k_{\mathrm{HA}}+\left(k_{\mathrm{S}}+k_{-3}\right) a_{\mathrm{H}}{ }^{*}\right]
\end{align*}
$$

It is possible to discuss equation (13) by a 'semiempirical' or by an ' analytical ' approach.

In the 'semi-empirical' approach we use all the available information in order to simplify the calculation of parameters. An approximate $\mathrm{p} K_{1}$ value for the N - p-nitrobenzylideneaniline might be inferred from the known $\mathrm{p} K_{\mathrm{a}}$ of benzylidene-1,1-dimethylethylamine ($\mathrm{p} K_{\mathrm{a}}$ 6.70 in water ${ }^{16}$), its p-nitro-derivative ($\mathrm{p} K_{\mathrm{a}} 5 \cdot 40$ in water ${ }^{16}$) and benzylideneaniline [$\mathrm{p} K_{\mathrm{a}} 1.50$ in water and $2 \cdot 27$ in $4: 1(\mathrm{w} / \mathrm{w}) \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}^{5}$]. In benzylideneaniline, the ' aniline' ring is twisted out of the PhCHN plane; thus, the lone pair on nitrogen can partially interact with the delocalised orbitals of the ring. This effect adds to the electron-withdrawing power of the aromatic ring

[^2]and so a decrease in $\mathrm{p} K_{\mathrm{a}}$, relative to benzylidene-1,1dimethylethylamine, is expected and observed. If the benzylideneaniline and its p-nitro-derivative have the same molecular conformation, the same effect observed for benzylidene-1,1-dimethylethylamines should be expected. Previously, ${ }^{17}$ it was shown that the general behaviour of the $\Delta v-\sigma$ correlation \dagger and the ρ value for p-X-benzylideneanilines do not differ significantly from those for the p-X-benzylidenemethylamines. Therefore the ρ^{+}value $1 \cdot 6$ reported for the dissociation constants of benzylidene-1,1-dimethylethylamines ${ }^{16}$ was used and $K_{1} 0.11 \mathrm{~mol} \mathrm{1}^{-1}$ was estimated for p-nitrobenzylideneaniline in $1: 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(\mathrm{w} / \mathrm{w}) .+$ Since $K_{1} \gg a_{\mathrm{H}}{ }^{*}$ over the entire $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ range examined, the break in the $\mathrm{p} a_{\mathrm{H}}{ }^{*}-$ rate profile at $\mathrm{p} a_{\mathrm{H}}{ }^{*} c a .3$ requires that $k_{\mathrm{O}} \gg k_{\mathrm{S}} a_{\mathrm{H}}{ }^{*}$.
Moreover, in discussing the $k_{\text {cat }}$ rate law, it must be observed that in the $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ region of interest for general catalysis, the contribution to the observed rate from the attack of hydroxide ion on the protonated Schiff's base is negligible. Equation (13) yields (14).
\[

$$
\begin{equation*}
k_{\mathrm{cat}}=\left(k_{3} k_{\text {IIA }} / K_{1} k_{-3}\right) a_{\mathrm{H}} * /\left[\left(k_{\mathrm{O}} / k_{-3}\right)+a_{\mathrm{H}}{ }^{*}\right] \tag{14}
\end{equation*}
$$

\]

Hyperbolic relationships of the form (14) may be written in a linear form in three different ways. ${ }^{18,19}$ It is best to use all the transformations having different matrices when the function varies between wide limits. ${ }^{19}$ The three possible transformations were applied to our $k_{\text {cat }}$ data in Table 3; a good correlation between experimental and calculated data is obtained only when the matrix of equation (15) was used. The parameters

$$
\begin{equation*}
a_{\mathrm{H}} * / k_{\text {cat }}=K_{1} k_{\mathrm{o}} / k_{3} k_{\mathrm{HA}}+\left(K_{1} k_{-3} / k_{3} k_{\mathrm{HA}}\right) a_{\mathrm{H}} * \tag{15}
\end{equation*}
$$

estimated by a weighted, least-squares treatment are reported in Table 5; experimental data are in good

Table 5
Parameters for the $k_{\text {cat }}$ [equation (15)] and $k_{\text {ext }}$ [equation (16)] rate laws ${ }^{a}$

${ }^{a}$ Error refers to standard deviations. ${ }^{b} r^{2}=0.994 . \quad{ }^{c}$ Value calculated from the estimated parameters. ${ }^{\boldsymbol{d}}$ The table of analysis of variance is not reported but is available on request.
agreement with the curve calculated by equation (14) (Figure 1).
Having a complete, quantitative catalytic profile, the observed rate coefficients were corrected for general catalysis; the corrected values ($k_{\text {ext }}$) are shown in Figures 2 and 3 and representative values are reported in Table 4. The $k_{\text {ext }}$ rate law reduces to equation (16).

$$
\begin{equation*}
k_{\mathrm{ext}}=\frac{\left(k_{\mathrm{O}} k_{2}+k_{\mathrm{O}} k_{3} a_{\mathrm{H}}^{*}\right) / K_{1} k_{-3}}{\left(k_{\mathrm{O}} / k_{-3}\right)+a_{\mathrm{H}}^{*}} \tag{16}
\end{equation*}
$$

$\dagger \Delta \nu=\nu_{\mathrm{H}}-\nu_{\mathrm{X}}$ is the difference in wavenumber between the absorption maxima of the H - and X-substituted compounds.
\ddagger This assumption implies that the ρ^{+}value does not change much by reason of the effect of solvent.

The parameters of such an equation may be estimated by both a linear multiple regression analysis ${ }^{20}$ [if equation (16) is linearized as $k_{\text {est }}=k_{2} / K_{1}+$ $\left.\left(k_{-3} / K_{1}\right) a_{\mathrm{H}}{ }^{*}-\left(k_{-3} / k_{\mathrm{O}}\right) k_{\mathrm{ext}} a_{\mathrm{H}}{ }^{*}\right]$ and an optimization program. ${ }^{21}$ The two sets of parameters, evaluated from experimental data, agree satisfactorily; the mean values are reported in Table 5. It may be observed that the two independent estimates of k_{O} / k_{-3} are in good agreement. The $\mathrm{p} a_{\mathrm{H}}{ }^{*}$-rate profile for the hydrolysis of N - p-nitrobenzylideneaniline (Figure 2) is a theoretical curve calculated from equation (16).

Figure $1 \mathrm{p} a_{\mathrm{H}}{ }^{*}-\log k_{\text {cat }}$ Profile for the hydrolysis of N - p nitrobenzylideneaniline. The line is calculated from equation (14)

In the foregoing discussion, the possibility that the catalysts convert the neutral carbinolamine into products directly has not been envisaged. This mechanism corresponds to the general acid catalysis (17) and can be

ruled out on the following grounds. In the reverse direction, mechanism (17) requires that the product of the catalytic coefficient for a general acid $k_{\text {HA }}{ }^{*}$, its concentration [HA], and the concentration of aldehyde

[^3]$[>C=O]$, equals the product of the concentrations of the protonated aldehyde $\left[>C= \pm+\mathrm{O} H\right.$, conjugate base $\left[A^{-}\right]$, and the rate coefficients k^{*} for the formation step $\left(k^{*}\left[\mathrm{~A}^{-}\right][\rangle \mathrm{C}=\stackrel{+}{\mathrm{O}} \mathrm{H}\right]=k_{\mathrm{HA}} *[\mathrm{HA}][>\mathrm{C}=\mathrm{O}] \quad$ or $k^{*}=$ $k_{\mathrm{HA}} * K_{\mathrm{a}} / K_{\mathrm{HA}}$, where $\left.K_{\mathrm{a}}=[>\mathrm{C}=\mathrm{O}]\left[\mathrm{H}^{+}\right] /[>\mathrm{C}=+\mathrm{O} \mathrm{H}]\right) . \quad K_{\mathrm{a}}$, the equilibrium constant for the protonation of p nitrobenzaldehyde is 2.8×10^{822} and hence $k^{*}=$ $5 \times 10^{14} k_{\text {HA }}$.

The $k_{\text {HA }}{ }^{*}$ value may be estimated by the equation $k_{\mathrm{HA}} *=k_{\mathrm{HA}}\left[\mathrm{PhNH}_{2}\right] / K_{\mathrm{eq}}$, where k_{EA} is the observed catalytic coefficient for the forward reaction, $\left[\mathrm{PhNH}_{2}\right]=$ 1 m for simplicity's sake, and $K_{\mathrm{eq}}=\left[\mathrm{PhNH}_{2}\right][>\mathrm{C}=\mathrm{O}] /$ [PhNHCOH]. $K_{\text {eq }}$ may be estimated from the relation
 [$>\mathrm{C}=\mathrm{O}$]. Experimental or approximate values are available for all the equilibrium constants. For $\mathrm{p} K_{7}$,

Figure $2 \mathrm{p} a_{\mathrm{H}}{ }^{*}$-Rate profile for the hydrolysis of N - p-nitrobenzylideneaniline at 25° (ionic strength 0.045 m) in aqueous methanol $\left(20.0 \% \mathrm{w} / \mathrm{w} \quad \mathrm{H}_{2} \mathrm{O}\right)$. The line is theoretical for equation (16): e, extrapolated rate coefficients; \bigcirc, observed rate coefficients
the value 3.75 [in $\left.4: 1(\mathrm{w} / \mathrm{w}) \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right]$ was used. ${ }^{23}$ For K_{4}, a value higher than K_{7} by one order of magnitude was estimated. ${ }^{24}$ For K_{f}, only a rough estimate is possible; as values of the same order of magnitude were found in the literature for several secondary and tertiary amines ($0.5<K_{\mathrm{f}}<4.3{ }^{24}$), the approximate value 2 was used.

The realization that $k_{\text {HA }}=K_{1} k_{\mathrm{O}} / \mathrm{I} \cdot 81 \times 10^{-5} k_{3} \cong 20 k_{\mathrm{O}}$ (Table 5), gives $k^{*}=2 \times 10^{17} k_{\mathrm{O}} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. As the
${ }_{22}$ K. Yates and R. Stewart, Canad. J. Chem., 1959, 3\%, 664.
${ }^{23}$ B. Gutbezahl and E. Grunwald, J. Amer. Chem. Soc., 1953, 75, 559.
${ }_{24}{ }_{24}$ J. Hine and F. C. Kokesh, J. Amer. Chem. Soc., 1970, 92, 4383.
${ }^{25}$ M. Eigen, Discuss. Faraday Soc., 1965, 39, 7.
fastest diffusion-controlled processes have rate coefficients of $10^{11}-10^{12} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1,}{ }^{25}$ an unrealistic k_{O} value is required in order to obtain a k value lower than $10^{11}-10^{12}$. Therefore, it seems possible to rule out mechanism (17). The same evidence was reported for acid-catalysed addition of semicarbazide to p-nitrobenzaldehyde, ${ }^{26}$ the mutarotation of glucose, ${ }^{27}$ and the hydration of aldehydes. ${ }^{28}$

In the 'analytical' approach, the $k_{\text {ext }}$ rate law of equation (13) may be simplified by setting $k_{\mathrm{a}}=$ $k_{2} k_{\mathrm{O}} /\left(k_{-3}+k_{\mathrm{S}}\right), \quad k_{\mathrm{b}}=\left(k_{2} k_{\mathrm{S}}+k_{3} k_{\mathrm{O}}\right) /\left(k_{-3}+k_{\mathrm{S}}\right), \quad k_{\mathrm{c}}=$ $k_{3} k_{\mathrm{S}} /\left(k_{-3}+k_{\mathrm{S}}\right), \quad k_{\mathrm{d}}=K_{1}\left(k_{-2}+k_{\mathrm{O}}\right) /\left(k_{-3}+k_{\mathrm{S}}\right), \quad$ and $k_{\mathrm{e}}=K_{1}+\left(k_{-2}+k_{\mathrm{O}}\right) /\left(k_{-3}+k_{\mathrm{S}}\right)$. This gives the rate law (18). The calculation of the parameters in equation

$$
\begin{equation*}
k_{\mathrm{ext}}^{\prime}=\frac{k_{\mathrm{a}}+k_{\mathrm{b}} a_{\mathrm{H}}^{*}+k_{\mathrm{c}} a_{\mathrm{H}}^{* 2}}{k_{\mathrm{d}}+k_{\mathrm{e}} a_{\mathrm{H}}^{*}+a_{\mathrm{H}}^{* 2}} \tag{18}
\end{equation*}
$$

(18) is based on the following principles. (1) At high acidity in the $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ independent range, equation (18) reduces to $k_{\text {ext }}{ }^{\prime}=k_{3} /\left(1+k_{-3} / k_{\mathrm{S}}\right)$, as only the terms in $a_{\mathrm{H}}{ }^{* 2}$ prevail. On the alkaline side of the $\mathrm{p} a_{\mathrm{H}}{ }^{*}$ independent range the terms involving $a_{\mathrm{H}}{ }^{*}$ are negligible and equation (18) simplifies to $k_{\text {est }}^{\prime}=k_{2} / K_{1}\left(1+k_{-2} / k_{0}\right)$. Thus, the specification of rate-determining steps boils down to a quantitative evaluation of the k_{-3} / k_{S} and k_{-2} / k_{O} ratios. (2) To do this, two reasonable assumptions may be made. First, in slightly acidic conditions ($3<\mathrm{p} a_{\text {H }}{ }^{*}<$ 6) the parameters independent of $a_{\mathrm{H}}{ }^{*}$ in equation (18) are negligible; this gives the rate law (19). Secondly,

$$
\begin{equation*}
k_{\mathrm{ext}}^{\prime}=\left(k_{\mathrm{b}}+k_{\mathrm{c}} a_{\mathrm{H}}^{*}\right) /\left(k_{\mathrm{e}}+a_{\mathrm{H}}^{*}\right) \tag{19}
\end{equation*}
$$

in mildly basic solution ($8<\mathrm{p} a_{\mathrm{H}}{ }^{*}<10$), the terms involving $a_{\mathrm{H}}{ }^{* 2}$ are negligible and equation (18) reduces to (20) where $k_{\mathrm{h}}=k_{\mathrm{a}} / k_{\mathrm{e}}, k_{\mathrm{i}}=k_{\mathrm{b}} / k_{\mathrm{e}}$, and $k_{\mathrm{m}}=k_{\mathrm{d}} / k_{\mathrm{e}}$.

$$
\begin{equation*}
k_{\mathrm{ext}}{ }^{\prime}=\left(k_{\mathrm{h}}+k_{\mathrm{i}} a_{\mathrm{H}}{ }^{*}\right) /\left(k_{\mathrm{m}}+a_{\mathrm{H}}{ }^{*}\right) \tag{20}
\end{equation*}
$$

Equations (19) and (20) are of the form (16) and the parameters were estimated as previously reported. The parameters of equation (19), evaluated from the $k_{\text {ext }}$ values at $\mathrm{p} a_{\mathrm{B}}{ }^{*}<6.06$ (Table 3) and those of equation (20), evaluated from the $k_{\text {obs }}$ values at $\mathrm{p} a_{\mathrm{H}}{ }^{*}>8$ (Table 4), are reported in Table 6. The variations of $k_{\text {ext }}{ }^{\prime}$ with

Table 6

Parameters for the rate laws (19) and (20) a, b

Equation (19)	$k_{\mathrm{b}} / \mathrm{mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$	$(8.37 \pm 0.64) \times 10^{-8}$
	$k_{\mathrm{c}} / \mathrm{s}^{-1}$	$0 \cdot 236 \pm 0.052$
	$k_{\mathrm{e}} / \mathrm{mol} \mathrm{l}^{-1}$	$(1 \cdot 30 \pm 0 \cdot 03) \times 10^{-4}$
Equation (20)	$k_{\mathrm{h}} / \mathrm{mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$	$(3 \cdot 61 \pm 0 \cdot 23) \times 10^{-13}$
	$k_{\mathrm{i}} / \mathrm{s}^{-1}$	$(5 \cdot 99 \pm 0 \cdot 16) \times 10^{-4}$
	$k_{\mathrm{m}} / \mathrm{mol} \mathrm{l}^{-1}$	$(1.45 \pm 0 \cdot 04) \times 10^{-7}$

${ }^{a}$ See text for details and definitions of symbols. ${ }^{b}$ Error refers to standard deviation.
$a_{\mathrm{H}} *$ calculated from equations (19) and (20) are shown as the dashed and dotted lines respectively in Figure 3.

[^4]84, 4319.
${ }_{27}$ C. G. Swain and E. R. Thornton, J. Amer. Chem. Soc., 1961, 83, 3884 .
${ }_{28}$ Y. Pocker and D. G. Dickerson, J. Phys. Chem., 1969, \%3, 4005.
(3) From the parameters k_{e} and k_{m}, the two following roots are obtained for $K_{1}: K_{1}=1.29 \times 10^{-4}$ and $c a$. $10^{-7} \mathrm{~mol} \mathrm{l}^{-1}$. The former value corresponds to a ca.

Figure 3 p $a_{\mathrm{H}}{ }^{*}$-Rate profile for the hydrolysis of N - p-nitrobenzylideneaniline. The lines are theoretical for: equation (19), dashed; equation (20), dotted; equation (21), full; O and © , see Figure 2; Δ value of $k_{\text {est }}$ used for calculation of parameters in equation 19
40 -fold increase in basicity of benzylideneaniline due to the p-nitro-substituent. This is surprising but, when the $\mathrm{p} K_{\mathrm{a}}$ value of p-chlorobenzylideneaniline is taken
into account ($\mathrm{p} K_{\mathrm{a}} 2 \cdot 80^{15}$), it can be explained by smaller twisting of the 'aniline ' ring in the two para-derivatives than in the unsubstituted compound. (4) Starting from $K_{1}=1.29 \times 10^{-4}$, subsequent calculations (which are not reported in detail) on the parameters in Table 6 give the following values: $10^{-9} k_{3} / k_{2} 1.79 \pm 0.051 \mathrm{~mol}^{-1}$, $10^{7} k_{-2} / k_{\mathrm{O}} 2 \cdot 27 \pm 0 \cdot 33, k_{-3} / k_{\mathrm{S}} \mathrm{I} \cdot 45 \pm 0 \cdot 18,10^{10} k_{2} 3 \cdot 22 \pm$ 0.231 mol s , and $k_{3} 0.58 \pm 0.05 \mathrm{~s}^{-1}$. The alternative calculation with $K_{1} c a .10^{-7}$ gives a negative k_{-3} / k_{S} ratio. (5) Using the preceding values, equation (18) reduces to (21). The $\mathrm{p} a_{\mathrm{H}}{ }^{*}$-rate profile shown as a full line in

$$
\begin{align*}
k_{\mathrm{ext}}{ }^{\prime} & =\frac{\left(k_{2} k_{\mathrm{O}}+k_{3} k_{\mathrm{O}} a_{\mathrm{H}}{ }^{*}+k_{3} k_{\mathrm{S}} a_{\mathrm{H}}{ }^{* 2}\right) /\left(k_{-3}+k_{\mathrm{S}}\right)}{\left[K_{1} k_{\mathrm{O}} /\left(k_{-3}+k_{\mathrm{S}}\right)\right]+K_{1} a_{\mathrm{H}}^{*}+a_{\mathrm{H}}^{* 2}} \tag{21}\\
& =\frac{4.68 \times 10^{-17}+8.34 \times 10^{-8} a_{\mathrm{H}}^{*}+0.236 a_{\mathrm{H}}^{* 2}}{1 \cdot 89 \times 10^{-11}+1.29 \times 10^{-4} a_{\mathrm{H}}{ }^{*}+a_{\mathrm{H}}^{* 2}}
\end{align*}
$$

Figure 3 is a theoretical curve calculated from equation (21). It must be observed that the fitting of experimental data to the curve calculated by equation (21) is more satisfactory than that calculated by (16); however, the experimental $\mathrm{p} a_{\mathrm{H}}{ }^{*}-\log k_{\text {cat }}$ profile cannot be explained.

Many alternative kinetic schemes were tested, but we cannot envisage any other mechanism by which the experimental data may be explained. In the absence of an independent determination of the K_{1} value, quantitative study of the general catalysis is essential to establish the mechanism.

We thank the C.N.R. (Italy) for support.
[4/258 Received, 11th February. 1974]

[^0]: $\dagger K_{1}, K_{4}$, and K_{7} are acid dissociation constants.
 ${ }^{1}$ For comprehensive reviews see (a) W. P. Jencks, Progy. Phys. Org. Chem., 1964, 2, 63; (b)'Catalysis in Chemistry and Enzymology,' McGraw-Hill, New York, 1969, ch. 10.
 ${ }^{2}$ R. E. Barnett, Accounts Chem. Res., 1973, 6, 41.
 ${ }^{3}$ S. M. Silver and J. M. Sayer, J. Amer. Chem. Soc., 1973, 95, 5073.
 ${ }^{4}$ R. L. Reeves, J. Amer. Chem. Soc., 1962, 84, 3332.
 ${ }^{5}$ I. R. Bellobono and G. Favini, Tetrahedron, 1969, 25, 57.

[^1]: ${ }^{13}$ E．A．Guggenheim，Phil．Mag．，1926，2， 538.

[^2]: ${ }^{16}$ E. H. Cordes and W. P. Jencks, J. Amer. Chem. Soc., 1963, 85, 2843.

[^3]: ${ }^{17}$ D. Pitea, D. Grasso, and G. Favini, J. Mol. Structure, 1971, 10, 101.
 ${ }_{18}$ B. H. J. Hofstee, Science, 1952, 116, 329.
 ${ }^{19}$ Yu. A. Kokotov, J. Phys. Chem. U.S.S.R., 1967, 41, 493.
 ${ }^{20}$ M. R. Spiegel, 'Statistics,' McGraw-Hill, New York, 1961, p. 247.
 ${ }_{21}$ J. L. Dye and V. A. Nicely, J. Chem. Educ., 1971, 48, 443.

[^4]: ${ }^{26}$ E. H. Cordes and W. P. Jencks, J. Amer. Chem. Soc., 1962,

